Study of airflow and particle transport in acinar airways of the human lung

نویسنده

  • Haribalan Kumar
چکیده

In this work, airflow and particle transport are studied using mathematical and image-based models of pulmonary acinus. Numerical results predict that airflow in the presence of wall motion in a three-dimensional honeycomb like geometry is characterized by the presence of a recirculation region within the alveolar cavity and a weak entraining flow between alveolar duct and cavity. Alveolar flow in distal generations is characterized by higher alveolar flow rates, larger entrainment of ductal flow and absence of recirculatory flow inside alveoli. The study of transport constitutes assessment of mixing visualized by the tracking of massless particles and the study of transport and deposition of aerosols. The phenomenon of steady streaming is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the explanation for observed folding of material lines and increases in material surface area, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. Streaming results in non-zero drift of particles between the beginning and end of a breathing cycle. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of non-zero inertia, flow asymmetry and large K C number. Evidence of streaming and related Lagrangian drift is also observed in image-based acinar models. Finally, particle deposition calculations are performed on the models of pulmonary acinus considered in this study. ii To my grandma J, parents and my sister iii ACKNOWLEDGMENTS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micro Particles Transport and Deposition in Realistic Geometry of Human Upper Airways

Realistic geometry of human upper airways from mouth to the end of trachea was reconstructed by implementing the CT-Scan images of a male subject.   A computational model for analyzing the airflow in the airways was developed and several simulations were performed.  To capture the anisotropy of the inhaled airflow in the upper airways, the Reynolds stress transport model of turbulence was used ...

متن کامل

A Numerical Simulation of Inspiratory Airflow in Human Airways during Exercise at Sea Level and at High Altitude

At high altitudes, the air pressure is much lower than it is at sea level and contains fewer oxygen molecules and less oxygen is taken in at each breath. This requires deeper and rapid breathing to get the same amount of oxygen into the blood stream compared to breathing in air at sea level. Exercises increase the oxygen demand and make breathing more difficult at high altitude. In this study, ...

متن کامل

Morphopathological study of naturally occurring ovine pulmonary adenocarcinoma in sheep in Fars province, Iran

Ovine pulmonary adenocarcinoma (OPA) is a contagious and transmissible lung cancer of sheepresembling human bronchiolo-alveolar carcinoma. In the present study, lungs of 9400 sheep slaughtered inFars province, Iran were examined morphopathologically. The OPA was diagnosed in the lungs of 21(0.22%) out of 9400 sheep. Frequency of involvement of different lobes in the affected lungs was includeda...

متن کامل

Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions.

Although the major mechanisms of aerosol deposition in the lung are known, detailed quantitative data in anatomically realistic models are still lacking, especially in the acinar airways. In this study, an algorithm was developed to build multigenerational three-dimensional models of alveolated airways with arbitrary bifurcation angles and spherical alveolar shape. Using computational fluid dyn...

متن کامل

Gas Diffusion through the Fractal Landscape of the Lung: How Deep Does Oxygen Enter the Alveolar System?

We investigate oxygen transport to and across alveolar membranes in the human lung, the last step in the chain of events that takes oxygen through the bronchial airways to the peripheral, acinar airways. This step occurs by diffusion. We carry out analytic and numerical computations of the oxygen current for fractal, space-filling models of the acinus, based on morphological data of the acinus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016